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Abstract Widespread degradation of wetlands has

motivated the development of tools to evaluate

wetland condition. The application of field-based

tools over large regions can be prohibitively expen-

sive; however, land cover data may provide a surro-

gate for intensive assessments, enabling rapid and

cost-effective evaluation of wetlands throughout

whole regions. Our goal was to determine if land

cover data could be used to estimate the biotic

integrity of wetlands in Alberta’s Beaverhills

watershed. Biotic integrity was measured using both

plant- and bird-based indices of biotic integrity

(IBIs) in 45 wetlands. Land cover data were

extracted from seven nested landscape extents

(100–3,000 m radii) and used to model IBI scores.

Strong, significant predictions of IBI scores were

achieved using land cover data from every spatial

extent, even after factoring out the influence of

location to address the spatial autocorrelation of land

cover classes. Plant-based IBI scores were best

predicted using data from 100 m buffers and bird-

based IBI scores were best predicted using data

extracted from 500 m buffers. Road cover or density

and measures of the proportion of disturbed land

were consistent predictors of IBI score, suggesting

their universal importance to plant and bird commu-

nities. Simplified models using the proportion of

undisturbed land were less accurate than more

detailed models (reductions in r2 of 0.31–0.32).

Regardless of the level of detail in land cover

classification, our results emphasize the need to

optimize landscape extent for the taxonomic group of

interest: an issue that is typically poorly articulated

in studies reporting on the development of GIS-based

assessment methods. Our results also highlight the

need to calibrate models in test areas before scaling

up, to ensure predictive accuracy.
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Introduction

Concern regarding the degradation of wetlands and

loss of wetland services has led to the creation of

policies aimed at conserving wetlands. A common

impediment to wetland policy implementation is the

difficulty in evaluating wetlands at the level necessary

to inform land use planning. Intensive approaches to

wetland assessment that require site visits, such as

indices of biotic integrity (IBIs) or rapid assessment

methods, are well established and broadly adopted

(e.g., Barbour and Yoder 2000). Unfortunately, the

cost and time requirements associated with site visits

prohibit the application of intensive methods across

broad land use management areas (Brooks et al. 2004).

To facilitate land use planning and to provide

habitat managers with greater flexibility in wetland

assessments, past research has developed GIS-based

assessment tools (e.g., Phillips et al. 2005; Mita et al.

2007; Reiss and Brown 2007). GIS-based tools enable

the evaluation of wetland condition using airborne or

satellite remotely sensed data, eliminating the need for

expensive and time consuming site visits. However,

these tools are predicated on the assumption that

landscape composition and configuration are predic-

tive of biotic integrity at individual wetlands.

Unfortunately, the relationship between surround-

ing landscape and wetland condition is not always

strong (e.g., Tangen et al. 2003) and may vary with

a watershed’s hydrological transport capacity

(Fraterrigo and Downing 2008). In the Aspen Parkland

Ecoregion, for example, most wetlands lack stream

inputs, and receive relatively little surface run-off

(Devito et al. 2005), meaning that the mechanism

typically connecting wetlands to uplands is likely less

active than in regions with greater surface water run-

off and stream inputs. Without strong predictive

relationships, GIS-based assessments may provide

misleading evaluations of wetland condition. The lack

of strong predictive relationships could result because

GIS data are incorrect (e.g., out of date); because of

time-lags between disturbance in the surrounding

landscape and conditions within the wetland (e.g.,

Findlay and Bourdages 2000); or because natural

variability in ecological and hydrological functions

mask the response of wetland biota to disturbances.

Furthermore, spatial autocorrelation among land cover

types may confound any observed relationships

between individual land covers and wetland condition,

as has been observed in lotic systems (King et al.

2005). Spatial autocorrelation is the property of having

a non-random distribution: it is common in nature as

environmental variables are frequently clustered or

spread over gradients (Legendre 1993). If the distri-

bution of land covers is non-random, an apparent

relationship between land cover and wetland condition

could be the result of some unmeasured causal factor

that determines the distribution of land cover.

Although spatial autocorrelation likely presents

a problem for any correlation-based study relating

ecological condition to surrounding land cover, it is

rarely measured (King et al. 2005).

Even if a relationship between surrounding land-

scape and wetland condition is strong, it is likely to be

influenced by the spatial extent (sensu Turner et al.

1989) at which landscape characteristics are consid-

ered (Rooney and Bayley 2011). Different taxa interact

with their habitat at different spatial extents or

functional grain-sizes (Romero et al. 2009). Thus, the

extent at which landscape characteristics will be most

predictive of biotic integrity will depend on the biotic

assemblage used to measure integrity (Levin 1992;

Paltto et al. 2006). For example, mobile birds might be

expected to interact with, and thus be influenced by,

a larger area of land surrounding a wetland than

stationary plants, yet both are commonly used as the

basis of IBI development. Issues of landscape extent

have long been acknowledged in the field of landscape

ecology (e.g., Turner et al. 1989; Wu 2004; Buy-

antuyev and Wu 2007), yet rarely do studies that

propose methods of assessing wetlands using remotely

sensed data articulate the issue of optimizing landscape

extent for the taxon or assemblage of interest. The need

to optimize landscape extent for the taxon of interest

has been acknowledged in work on lacustrine wetlands

(e.g., Brazner et al. 2007), but, to the best of our

knowledge, not in the shallow open-water wetlands

characteristic of much of central North America. Thus,

our primary goal was to articulate the importance of

optimizing landscape extent to the successful use of

remotely sensed data in regional wetland assessments.

To develop a valid GIS-based wetland assessment

tool, it must first be demonstrated that land cover is

predictive of biotic integrity at individual wetlands.

Biotic integrity can be represented by a quantitative

measure like an IBI score (Karr 1991). Two IBIs have

been developed and tested for use in shallow open-

water marsh wetlands of Alberta, one reliant on the
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vegetation community and the other on the wetland-

dependent songbird and shorebird community (Wilson

and Bayley 2012). Thus, our first objective was to

determine whether land cover could predict these IBI

scores and, if so, to identify the strongest and most

significant model for predicting plant- and bird-based

IBIs, respectively. If our hypothesis that land cover is

capable of predicting vegetation- and bird-based IBI

scores is supported, the next issue to address is whether

those relationships vary with landscape extent. Our

second objective, therefore, was to identify the optimal

spatial extent at which land cover predicts IBI scores

and to ascertain whether this optimal extent is the same

for IBIs based on both vegetation and wetland-

dependent songbirds and shorebirds. We hypothesize

that, given the differences in mobility between these

two taxa, bird-based IBI scores will be best predicted

by land cover data extracted from larger landscapes.

We were aware that spatial autocorrelation among

land covers might bias our conclusions regarding our

first two objectives (King et al. 2005). If the distribu-

tion of land covers is non-random, but rather depends

on the location of the site in question, we might

wrongly conclude that land cover is predictive of

biotic integrity when, in fact, it is location or some

other underlying characteristic of the environment

(i.e., spatial dependency) that is influencing biotic

integrity. Thus, we sought to confirm that our conclu-

sions regarding the capacity of land cover data to

predict wetland IBI scores and the optimal spatial

extent at which such predictions are made were not

merely the consequence of the non-random distribu-

tion of land covers.

Within the jurisdiction where we work, the percent of

undisturbed land within 100 m of the open-water

boundary has been proposed as a simple estimate of

wetland condition that can be measured remotely.

Similar measures have been successfully used as proxies

of detailed land cover elsewhere (e.g., Miller et al. 1997;

Brooks et al. 2004; Wardrop et al. 2007; Sundell-Turner

and Rodewald 2008). Although simpler to obtain and

interpret, such proxies may exclude important informa-

tion pertinent to biotic integrity, introducing additional

error into GIS-based assessments. For example, not all

forms of disturbance can be expected to affect biotic

integrity equally: urban or industrial development

would likely have a stronger influence on the biotic

condition of a nearby wetland than low-intensity

agriculture (Forrest 2010; Rooney and Bayley 2012).

Thus, our third objective was to contrast a model that

predicts IBI scores from the percent of undisturbed land

surrounding each wetland with more sophisticated

models, derived from detailed land cover data, divided

into 11 distinct land cover classes.

Methods

Study area

The 45 wetlands selected for sampling are situated in

the Beaverhills watershed of the Aspen Parkland

Ecoregion of Alberta, Canada (53.54�N latitude and

113.50�W longitude), which drains into the North

Saskatchewan River. This Ecoregion incorporates the

transition zone between northern prairie and southern

boreal habitats. The region is generally flat and

drainage is poor. Climate is temperate with a daily

mean temperature of 2.4 �C, with a maximum in July

(mean high of 22.2 �C) and a minimum in January

(mean low of -19.1 �C) (EC 2011). Precipitation

averages 482.7 mm annually with 374.8 mm falling as

rain (EC 2011), although there is substantial inter-

annual variability. Vegetation transitions from closed

aspen forest in the northern part of the Beaverhills

watershed to grassland with aspen patches in the south.

Wetlands typical of the region are isolated with few

surface water inlets or outlets and drainage is primarily

via groundwater recharge (Holden 1993).

We chose 45 shallow open-water marsh wetlands

from a list of candidates within the Beaverhills

watershed that were identified from 2007 aerial

photography (Fig. 1). The wetlands were selected to

represent a range of disturbance. Twenty-five were

relatively undisturbed, situated in parks or other

protected habitat. Fourteen included agricultural

activity within 500 m of their open-water boundaries.

The remaining six were constructed wetlands

(age [ 3 years), built to provide storm water storage

for the Edmonton urban area. All wetlands ranged

between 1 and 11 ha and included an open water zone.

IBI

We used two different IBIs to measure biotic integrity

in each wetland. The first was based on vegetation

community data, the second on wetland-dependent

songbird and shorebird community data (hereafter the
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bird-based IBI). Sampling followed methods outlined

in Rooney and Bayley (2012), and occurred during the

summers of 2008 and 2009. In brief, vegetation was

sampled from six quadrats deployed within the wet

meadow zone of each wetland in August, when peak

biomass is expected. The percent cover of each species

present was recorded with taxonomy following Moss

and Packer (1983) and names updated using the

Integrated Taxonomic Information System online

database (ITIS 2011). Quadrat results were averaged

to yield data on a per wetland basis. For wetland-

dependent songbirds and shorebirds, sites were visited

three times during the breeding season (May–July).

Three sites were visited between sunrise and

10:30 a.m. each day, and site order was rotated so

that each site was visited once at sunrise, once at the

middle period, and once at the latest period of the

morning. On each visit, auditory surveys (8 min, 50 m

fixed-radius point counts) were carried out at two

locations spaced at least 150 m apart. All target bird

species detected by sight or sound were recorded.

Identifications followed the American Ornithologist’s

Union standard (Poole 2005). The two point counts

were summed, and the maximum count from the three

visits was taken to yield counts on a per wetland basis.

IBI scores were calculated following Wilson and

Bayley (2012). From the vegetation community data,

we extracted metrics including the FQI score (Miller

and Wardrop 2006; Forrest 2010), the relative cover of

native perennials, the relative cover of sedge species,

and the width of the wet meadow zone. From the

wetland-dependent songbird and shorebird commu-

nity data, we calculated metrics including the richness

of temperate migrants, richness of Passeriformes, and

the relative abundance of ground nesters, canopy

foragers, and omnivores. We measured the Pearson’s

correlation between the two IBI scores to evaluate the

level of agreement between them, using SYSTAT

software (SYSTAT 2007).

Land cover

Satellite imagery was collected on 1 September 2009

and consisted of 2.5 m panchromatic and 10 m

multispectral SPOT imagery, which was provided by

the Alberta Terrestrial Imaging Centre. We classified

the imagery into 16 land cover types using the fuzzy k-

means unsupervised classification tool in Geomatica

Focus (PCI 2007). Classes were first identified through

visual assessment of the SPOT image, Google Earth

images, and a 1 m 2009 air photo. Manual editing was

performed to reclassify incorrectly classified areas on

the map. Significant overlap of land covers was

observed in 4 of the 16 classes. Each of these four

overlapping classes was masked and an unsupervised

classification using six classes was conducted on each.

Classes were then classified into land covers using the

SPOT image, Google Earth images, and 2009 air

photo for validation. The land cover classes were then

merged where appropriate (i.e., agriculture with

agriculture, etc.) to create a final map with 11 land

cover classes with 5 m grid resolution (Supplementary

Table S1).

Next, land cover patches were converted to poly-

gons in ArcMap (ESRI 2011) and a series of seven

nested buffers were created ranging in radius: 100,

300, 500, 1000, 1500, 2000, and 3000 m. These

buffers were generated from the perimeter of the open

water of each wetland (i.e., between standing water

and emergent vegetation). The area of each land cover

class within each buffer was calculated using zonal

Fig. 1 Map of the location of our 45 study sites and the

Beaverhills watershed. The national and provincial parks

indicated include the Elk Island National Park and the

Beaverhill-Cooking Lake Recreational Area
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statistics. Absolute areas were converted to propor-

tional data to standardize among wetlands. Road

density was calculated as the sum of the length of all

linear road features within each buffer divided by the

total buffer area. Road features were taken from

the Altalis 1:20,000 base feature road vector layer. The

proportion of undisturbed land within each buffer was

calculated as the sum of the proportion of grass and

forest cover.

Spatial autocorrelation

Positive spatial autocorrelation is the property

whereby two points located next to each other are

more similar than two points located far apart

(Legendre 1993) and results from some underlying

spatial dependency (sensu Goodchild 1992). We

measured spatial autocorrelation in a subset of four

of the 11 land cover classes using the Moran’s I index,

which typically ranges from -1 to ?1 with a zero

value indicating a random distribution, positive values

indicating that a land cover’s distribution is clustered

(i.e., positive spatial autocorrelation), and negative

values indicating a tendency to over-disperse (Moran

1950). We were interested in the forest, agricultural,

urban, and roads land cover classes because of

their importance in models predicting IBI scores

(see ‘‘Results’’ section). Beginning with the land cover

map described above, we ran a two pass 3 9 3

majority filter to remove noise and single pixel

features. We then converted this filtered map into

binary maps for each land cover class of interest and

calculated Moran’s I index value, Z scores, and

p values in ArcMap (ESRI 2011) to test the null

hypotheses that each class was randomly distributed

across the study area.

Modeling

We used backwards stepwise general linear modeling

(GLMs) with maximum likelihood estimation in

SYSTAT (SYSTAT 2007) to identify the best model

of the two IBIs using the relative cover of the 11 land

cover classes and road density extracted from each

buffer width separately. This modeling approach

eliminates issues associated with multi-collinearity

among proportional land cover data by automatically

accounting for simultaneous contributions from multi-

ple predictors. In order to reduce heteroscedasticity

and improve the normality of GLM residuals, land

cover data was 2/p 9 arcsine (square-root(x)) trans-

formed (recommended by McCune and Grace (2002)

for percent cover data) whereas road density was

log(x ? 1) transformed prior to analysis. The model

tolerance was 1 9 10-12, the probability threshold

for a variable to enter or be removed from the model

was 0.1, and each GLM was limited to 20 iterations.

We also used regression tree modeling in CART

(Steinberg and Colla 1997) to confirm the results of

GLM, growing the maximal model with least squares

regression and pruning with tenfold cross validation to

the minimum cost model. Regression tree models were

compared based on their r2 values.

We identified the optimal landscape extent as that

which yielded the model with the greatest (1) statis-

tical significance (F value, p value); (2) predictive

strength (r2 value); and (3) balance between model

accuracy and complexity, using Akaike’s information

criterion as corrected for small sample sizes (the AICc

value), which is a method analogous to the optimal

zoning approach described by Jelinski and Wu (1996).

Of these criteria, we gave the most weight to the last

criteria, as adding predictor variables to a model will

generally increase its predictive strength, even if only

due to random chance. The buffer size with the lowest

AICc value, lowest p value, and largest r2 value was

considered the optimal landscape extent at which IBI

scores should be related to land cover. We then

compared the optimal landscape extent for the vege-

tation-IBI with the optimal extent for the bird-IBI to

evaluate whether the two communities were related to

land cover at the same spatial extent.

To confirm that spatial autocorrelation was not

responsible for the observed relationships between

land cover and IBI scores, we factored out the

influence of location and re-ran the models. We did

this by first regressing UTM Easting and Northing

coordinates on IBI scores for both IBIs and saving the

residuals. We then used the saved residuals as

response variables in place of raw IBI scores and

repeated the backwards stepwise GLMs described

above. We also re-ran the optimal models identified in

the original model selection after factoring out the

influence of location in order to parse the total

variation in IBI scores into components explained by

both location and land cover, components explained

exclusively by location, and components explained

exclusively by land cover.
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We also modeled the proportion of undisturbed

land (also 2/p 9 arcsine(square-root(x)) transformed)

as a predictor of IBI scores. Using the criteria outlined

above, we compared these simple one-predictor

models with the best models identified by our back-

wards stepwise GLMs.

Results

The vegetation-based IBI scores ranged from 4.4 to

97.4 whereas the bird-based IBI scores ranged from

11.3 to 100.0, indicating that wetlands spanned a

gradient from the reference condition to heavily

disturbed. The two IBI scores were strongly correlated

with each other (Pearson’s r = 0.80, p \ 0.00001),

revealing good agreement in assessment of wetland

condition by the two indices.

IBI scores for both plant- and bird-based IBIs were

significantly predicted by land cover data at all spatial

extents considered (p \ 0.000001), with a minimum

of 63 and 60 % of variance in score explained by land

cover for plant- and bird-based IBIs, respectively.

The best model for each IBI had the highest r2 value

and the lowest AICc value (Tables 1, 2). Measures

of F and p value were less useful in identifying the

optimal model, as models differed in the number of

predictor variables included, and thus in their number

of degrees of freedom. For the plant-based IBI, the

best model included the density of roads, and the

proportion of the following land covers: agricultural

land, open water, urban development, and emergent

vegetation. For the bird-based IBI, the best model

included road density, and the proportion of forest, rail

lines, emergent and wet meadow vegetation. It should

also be noted that land cover was better able to predict

plant-based IBI scores (82 % variance explained)

than bird-based IBI scores (70 % variance explained).

The results of regression tree modeling were in general

agreement with GLMs, and so detailed regression tree

results are not presented.

The predictor variables included in the model, the

model fit, and the r2 value differed depending on the

spatial extent at which land cover was considered

(Tables 1, 2). For the vegetation-based IBI, the 100 m

spatial extent yielded the strongest and most signifi-

cant predictions of IBI scores. In contrast, for the bird-

based IBI, the 500 m buffer provided the best fit

(Fig. 2).

The forest, agricultural, urban, and roads land cover

classes all exhibited significant positive spatial auto-

correlation (Table 3), confirming that the distribution

of these land cover classes is clumped. Furthermore,

the regressions of UTM Easting and Northing coordi-

nates on the plant- and bird-based IBI scores were

significant, each explaining about 40 % of the total

variance in IBI scores (plant-based IBI = -176.34 ?

0.0011 UTM_E - 0.000030 UTM_N, F2,42 = 14.02,

p = 0.00002; bird-based IBI = -1000.42 ? 0.0012

UTM_E ? 0.00011 UTM_N, F2,42 = 14.29, p =

0.00002). Despite the strong relationship between IBI

scores and location, re-running the backwards stepwise

GLMs with the residuals from regressing location on

IBI scores did not change our conclusions. Even with

the influence of location factored out, land cover

yielded strong and significant predictions of biotic

Table 1 Results of GLM predicting vegetation-based IBI scores for 45 wetlands using land cover data extracted from a series of

seven nested spatial extents

Buffer

(m)

Model r2 AICc F (df) p value

100 94.500 2 10000.585 Road density 2 47.199 Agricultural 2 137.032
Water 2 93.900 Urban 2 71.244 EM zone

0.817 349.7 34.9 (5–39) <0.00001

300 89.052 - 14.403 Road density - 56.532 Agricultural - 78.365 Urban 0.766 355.3 44.9 (3–41) \0.00001

500 90.656 - 15823.679 Road density - 56.488 Agricultural - 80.747 Urban 0.746 359.0 40.2 (3–41) \0.00001

1,000 86.533 - 55.789 Agricultural - 99.440 Urban 0.669 368.5 42.4 (2–42) \0.00001

1,500 87.898 - 56.021 Agricultural - 97.347 Urban 0.657 370.0 40.3 (2–42) \0.00001

2,000 51.656 - 75.697 Forest - 211.424 Road 0.653 370.6 39.5 (2–42) \0.00001

3,000 93.465 - 67.336 Agricultural - 102.244 Urban 0.632 373.2 36.1 (2–42) \0.00001

Bold font indicates the optimal spatial extent

EM emergent, WM wet meadow
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integrity at every spatial scale assessed. Understand-

ably, r2 values were somewhat reduced (Table 4), but

optimal models still explained about 50 % of the

variance in biotic integrity using land cover data.

The variables included by the backwards stepwise

selection process were mainly a subset of those

included in models predicting raw IBI scores within

the same landscape extent (Supplementary Table S2).

Partitioning the variance in IBI scores (the total sums of

squares) into the components explained by location

alone, by location and land cover jointly, and by land

cover at the optimal spatial extent for each IBI reveals

that location has nearly no independent relationship

with IBI scores (Fig. 3). In contrast, nearly half of the

sums of squares explained by land cover are explained

by land cover independent of location.

The proportion of undisturbed habitat within 100 m

is a relatively poor predictor of vegetation- and bird-

based (raw) IBI scores (Table 5). Using the proportion

of undisturbed land extracted from larger buffers

improves r2 values and model fit, with the best fit

obtained by using data within 500 and 1,500 m to

predict scores for plant- and bird-based IBIs, respec-

tively. Yet even at optimal spatial extents, the one-

variable models do not perform as well as models that

use detailed land cover data: one-variable models have

lower r2 values, lower F values, and higher AICc

values than models using more detailed land cover

data (Tables 1, 2, 5).

Table 2 Results of GLM predicting wetland dependent song bird-based IBI scores for 45 wetlands using land cover data extracted

from a series of seven nested spatial extents

Buffer (m) Model r2 AICc F (df) p value

100 93.447 - 8230.627 Road density - 42.635 Agricultural - 111.631

Urban - 684.620 Rail - 122.795 EM zone

0.635 388.9 13.6 (5–39) \0.00001

300 85.193 - 14986.896 Road density - 50.944 Agricultural - 75.631 Urban 0.594 388.2 20.0 (3–41) \0.00001

500 37.462 2 23964.390 Road density 1 56.024 Forest 2 971.098
Rail 2 365.555 EM zone 1 249.306 WM zone

0.699 380.3 18.1 (5–39) <0.00001

1,000 95.779 - 53.111 Agricultural - 75.751 Urban - 175.282 Roads 0.645 382.1 24.9 (3–41) \0.00001

1,500 42.179 - 21531.726 Road density ? 72.848 Forest 0.600 385.0 31.5 (2–42) \0.00001

2,000 IBI = 61.827 ? 76.155 Forest - 289.814 Roads - 771.110 EM zone 0.630 384.0 23.3 (3–41) \0.00001

3,000 IBI = 62.847 ? 82.863 Forest - 441.823 Roads ? 908.908 Rail 0.629 384.2 23.2 (3–41) \0.00001

Bold font indicates the optimal spatial extent

Table 3 Results of tests for the random distribution of four

important land cover classes in the Beaverhills watershed

Land cover class Moran’s I index Z score p value

Forest 0.229 487.659 \0.00001

Agricultural 0.055 430.519 \0.00001

Urban 0.093 495.294 \0.00001

Roads 0.057 27.418 \0.00001

Moran’s I values typically range from -1 to ?1, with 0

indicating random distribution, positive values indicating a

tendency to cluster, and negative values indicating a tendency

to over-disperse (Moran 1950). Z scores and associated

p values test for the statistical significance of the deviation

from a random distribution

Fig. 2 Plot of the percent of variance in IBI score explained

using land cover data extracted from a nested series of spatial

extents. Models predicting vegetation-based IBI scores are

indicated by open circles whereas those predicting bird-based

IBI scores are indicated by closed circles. Note that vegetation-

based IBI scores are best predicted using land cover date

extracted from within 100 m, whereas bird-based IBI scores are

best predicted using land cover data extracted within 500 m of

the open-water boundary
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Discussion

Land cover predicts biotic integrity

Our results offer support for the use of land cover as an

indicator of biotic integrity estimated by both vegetation

and bird communities. The variation in land cover within

surrounding landscapes was able to explain the majority

of variance in IBI scores (70–82 %), but the proportion of

variance explained varied with the spatial extent of the

landscape considered. We found that bird-based IBI

scores were best predicted by land cover within 500 m

wide buffers around each wetland, whereas plant-based

IBI scores were best predicted by land cover within

100 m wide buffers around each wetland. Mack (2006)

and Mita et al. (2007) found similarly high r2 values in

predicting vegetation-based IBI scores with measures of

land cover surrounding depressional wetlands (72 and

65 %, respectively); however, neither study examined

multiple spatial extents.

Based on our results, use of GIS data to complete

region-wide assessments without site visits would

Table 4 Comparison of the proportion of variance in biotic integrity explained (i.e., r2 values) by land cover when land cover classes

are regressed on raw IBI scores versus when they are regressed on IBI scores after factoring out any influence of location

Buffer

radius (m)

Raw plant-based

IBI scores

Plant-based IBI scores

with location removed

Raw bird-based

IBI scores

Bird-based IBI scores

with location removed

100 0.82 0.52 0.64 0.34

300 0.77 0.47 0.59 0.39

500 0.75 0.41 0.70 0.45

1,000 0.67 0.43 0.65 0.43

1,500 0.66 0.47 0.60 0.47

2,000 0.65 0.35 0.63 0.46

3,000 0.63 0.40 0.63 0.39

Note that despite being reduced by over 0.2 on average, land cover continues to explain more than a third of the variance in biotic

integrity even after accounting for any influence of location

Fig. 3 Partitioning of variance in biotic integrity into compo-

nents explained by location alone, jointly by location and land

cover, and by land cover alone. The residual variance cannot be

explained by terms in our models. The numbers represent the

sums of squares explained by each term. In the figure depicting

variance in the plant-based IBI scores, land cover is extracted

from within the 100 m radius buffers, but for the bird-based IBI,

land cover was extracted from within the 500 m radius buffers.

The figure confirms that the relationship between biotic integrity

and land cover is not merely spurious, resulting from the

relationship between land cover and location. It also illustrates

that very little of the variance in IBI scores can be explained by

location independently of land cover
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introduce remarkably little error. The success of our

land cover-based models supports previous studies

suggesting that bird and vegetation communities are

related to land cover variables, even over large spatial

extents (e.g., Fairbairn and Dinsmore 2001; Brazner

et al. 2007; Luoto et al. 2007). The relationship

between biotic integrity and land cover is likely the

result of multiple processes. For example, wetlands

situated in disturbed landscapes suffer increased

exposure to environmental stressors (Crosbie and

Chow-Fraser 1999; Houlahan and Findlay 2004),

increased nest predation (Phillips et al. 2003),

increased invasion by exotic species (Galatowitsch

et al. 2000), and reduced habitat connectivity, which

has been associated with reduced richness of water-

birds (Guadagnin and Maltchik 2007). It is, therefore,

not surprising that land cover surrounding a wetland is

predictive of that wetland’s biotic integrity as mea-

sured from plants and wetland-dependent songbirds

and shorebirds.

Several factors could be responsible for the slight

differences between model-estimated and observed

IBI scores, including simple environmental variabil-

ity. In addition, there may be a time lag between when

a change occurs on the landscape and when the biota

responds noticeably to that change. This is especially

problematic where the disturbance is expected to

increase local extinction rates or decrease local

re-colonization rates, as long lived residents will

temporarily mask these effects (Findlay and Bourdag-

es 2000). In such cases, land cover data may warn of

impending impacts to wetland biota.

Although the variables included in the models

predicting IBI scores varied with spatial extent and

with the IBI considered (Tables 1, 2), certain variables

emerged as consistently important. For example, road

density or the relative cover of roads was an important

variable in models predicting bird-based IBI scores for

all of the spatial extents considered and for four out of

seven of the models predicting vegetation-based IBI

scores. Looking at wetland bird communities in

agriculturally impacted areas of Minnesota, Whited

et al. (2000) found that road density was an important

predictor, and that road effects on bird communities

were most pronounced at the 500 m spatial extent.

Looking at wet meadow vegetation communities in

Minnesotan wetlands, Galatowitsch et al. (2000) also

identified road density as an important correlate of

community composition, and found that the relation-

ship was strongest at the smallest spatial extent that

they considered (also 500 m). Thus, our results are in

agreement with both of these studies in terms of the

importance of roads and the spatial extent at which

they are most influential on wetland bird communities.

Practically all models that predict wetland condi-

tion based on land cover data include some measure of

Table 5 Results of GLM predicting plant- and bird-based IBI scores using the proportion of undisturbed land within a series of

nested buffers

IBI Buffer (m) Model r2 AICc F value p value

Plant-based 100 14.010 ? 110.440 Undisturbed 0.510 383.7 44.8 \0.00001

300 16.422 ? 86.546 Undisturbed 0.632 370.9 73.7 \0.00001

500 14.632 1 88.460 Undisturbed 0.633 370.7 74.2 <0.00001

1,000 15.703 ? 88.194 Undisturbed 0.593 375.3 62.8 \0.00001

1,500 15.872 ? 89.286 Undisturbed 0.604 374.2 65.4 \0.00001

2,000 14.735 ? 92.140 Undisturbed 0.594 375.3 62.9 \0.00001

3,000 11.218 ? 100.400 Undisturbed 0.586 376.1 60.9 \0.00001

Bird-based 100 13.744 ? 104.734 Undisturbed 0.384 402.0 26.8 0.000006

300 15.702 ? 82.630 Undisturbed 0.482 394.2 40.0 \0.00001

500 12.497 ? 86.960 Undisturbed 0.512 391.5 45.1 \0.00001

1,000 10.038 ? 92.671 Undisturbed 0.548 388.0 52.2 \0.00001

1,500 9.813 1 94.514 Undisturbed 0.566 386.3 56.1 <0.00001

2,000 8.594 ? 97.563 Undisturbed 0.557 387.2 54.1 \0.00001

3,000 5.495 ? 105.089 Undisturbed 0.539 389.0 50.1 \0.00001

Degrees freedom were 1–43 in all cases. Bold font indicates the optimal spatial extent
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the amount of disturbed land surrounding the wetland

(e.g., Mensing et al. 1998; Mita et al. 2007; Wardrop

et al. 2007; Sundell-Turner and Rodewald 2008). Six

of our seven models predicting plant—IBI scores and

three of our seven predicting bird—IBI scores

included agricultural and urban land covers. Those

models which did not include agriculture and urban

covers all included forest cover. The combination of

agricultural and urban land covers constitute the

majority of land disturbed by human activity, whereas

railway lines, cutlines, and roads constitute only small

fractions of the landscape on an area basis. In contrast,

forested land makes up the bulk of undisturbed land

cover at the northern edge of the prairies where the

Beaverhills watershed is situated. Because of the

collinearity in land covers, the proportion of agricul-

tural and urban land covers might be considered the

inverse of forest along a gradient of disturbance. Thus,

all the models predicting IBI scores include some

measure of the amount of land disturbed by human

activities, either directly (agriculture ? urban) or

indirectly (forest).

The only prominent difference in the subset of land

cover classes that predicted vegetation-based IBI

scores versus those classes that predicted bird-based

IBI scores was that bird IBI models more often

included railway lines and emergent vegetation. This

suggests that these land cover classes may have a

greater effect on birds than on plants. Birds are

sensitive to noise disturbance, both because it masks

predator arrival and alarm calls and because it

interferes with songs related to territory defense and

mate attraction (e.g., Slabbekoorn and Ripmeester

2008). Certainly railway lines may act as major

sources of noise. Similarly, birds rely on emergent

vegetation zones for nesting habitat (Delphey and

Dinsmore 1993), and thus the area of emergent

vegetation available could have an important effect

on bird communities. It is unclear to us why the area of

emergent vegetation was not predictive of the biotic

integrity of wet meadow plants. Possibly the scale of

the imagery did not match the scale at which the

vegetation was sampled in the field.

Spatial extent influences relationship between land

cover and biotic integrity

The appropriate spatial extent at which to evaluate

land cover data is contingent on what taxon forms the

basis of assessments of biotic integrity. The impor-

tance of spatial extent has been noted before

(e.g., Turner et al. 1989; Wu 2004; Houlahan et al.

2006; Brazner et al. 2007), yet previous efforts to

develop GIS-based assessment tools typically test only

a single spatial extent and rarely provide a biological

rationale for its selection. In stream or riverine wetland

studies, land cover data is often extracted from within

the watershed (e.g., Miller et al. 1997; Falcone et al.

2010) or at the scale of ridge tops and valleys (Wardrop

et al. 2007), but in small depressional wetlands with

complex surface–groundwater interactions, topography

is not necessarily the appropriate basis on which to

make decisions about landscape extent (Devito et al.

2005). Previous authors acknowledged the absence of

an obvious landscape extent appropriate for depres-

sional wetlands (e.g., Brown and Vivas 2005; Reiss and

Brown 2007). Typically, authors either select landscape

extents arbitrarily or adopt values published in the

literature. Studies that we reviewed examined buffers

ranging from 100 m to 3 km wide, which is also the

range over which we found models capable of predict-

ing IBI scores using land cover data, but the most

frequently adopted extent in the studies we reviewed

was 1 km. In our study system, this was larger than the

optimal spatial extent for either the vegetation or the

bird community.

Although all seven spatial extents that we consid-

ered yielded statistically significant models, their

predictive strength varied. Changing extents is known

to influence certain landscape pattern metrics (Turner

et al. 1989; Wu 2004), but we believe that variance in

the strength of relationships between biotic integrity

and landscape composition across spatial extents

reflects the real spatial nature of the relationship

between biota and their surroundings. In other words,

the predictive strength of our models is greatest when

the scale of analysis approximates the operational

scale of the taxon in question (Wu 2004). Plant-based

IBI scores were best predicted at the smallest spatial

extent we considered (within 100 m radius buffers),

whereas bird-based IBI scores were most strongly and

significantly related to land cover within 500 m radius

buffers. We attribute this discrepancy to the fact that

unlike stationary, passively dispersing plants, birds are

mobile and actively select their habitat. In other words,

they have a larger functional grain size (sensu Romero

et al. 2009). Most of the passerines important to the

bird-based IBI have breeding territories less than 1 ha,
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but many area-sensitive species like Wilson’s

Pharalope (Phalaropus tricolor), Black Tern (Childo-

nias niger), Marbled Godwit (Limosa fedoa), and

American Avocet (Botaurus lentiginosus), appear to

be using 100 ha areas (Dechant et al. 2001; Dechant

et al. 2002; Zimmerman et al. 2002; Dechant et al.

2003), which because of the small size of our

wetlands, corresponds with a landscape with a buffer

radius of about 500 m (the area encompassed by the

500 m buffers ranged from 91.4 to 147.1 ha, with a

mean of 112.6 ha). The idea that the optimal landscape

extent for assessing biotic integrity might be species-

specific is supported by other bird studies. For

example, Tozer et al. (2010) found that both Marsh

Wren and Least Bittern abundances were related to the

proportion of wetland in the surrounding landscape,

but at different spatial extents. They suggest that the

positive relationship between wetland habitat and bird

abundance is due to a greater influx of dispersing

individuals in landscapes with a greater proportion of

wetland habitat, although such a mechanism would

apply equally to plants through the dispersal of their

propagules, either by wind, water, or animal vectors.

The area of wetland cover within our buffers did not

emerge as a generally important predictor of IBI

scores, although measures of natural habitat (e.g.,

forest cover) or its complement (e.g., agricultural and

urban land cover) were consistently important in our

models and could also influence dispersal. Regardless,

the critical influence of spatial extent on the strength

and significance of models relating biota to the

surrounding landscape is clear. Our findings warn

against the arbitrary selection of landscape extents,

especially in depressional wetlands where appropriate

extents are not dictated by topography.

Spatial autocorrelation

We were surprised that land cover was able to explain

more than half the variance in IBI scores, even 3 km

away; especially for non-mobile plants when soil

storage capacities in the region are so high that run-off

is minimal (Devito et al. 2005) and the watershed

transportation capacity is very low (i.e., the wetlands are

fairly isolated). One explanation we considered was that

land covers were positively spatially autocorrelated

such that, for example, the abundance of forest 3 km

away is able to predict the biotic integrity of a wetland

because it is predictive of the amount of forest adjacent

to the wetland, not because it is directly affecting

communities within the wetland across such a large

distance. In other words, we were concerned the

observed correlation between land cover at large spatial

extents and IBI scores could be spurious. Positive spatial

autocorrelation is common in nature (Legendre 1993),

and indeed the four land cover classes most commonly

included in our models exhibited significantly clumped

distributions (Table 3).

To confirm that our conclusions about the capacity

of land cover to predict IBI scores and the optimal

spatial scales at which land cover should be considered

were not merely the result of positive spatial autocor-

relation, we factored out the influence of location on

IBI scores and then re-ran the models. This process

revealed a significant East–West gradient in IBI scores

for both the plant- and bird-based IBIs: most likely the

result of the presence of the City of Edmonton in the

West of our study region and the national and

provincial parks in the East (Fig. 1). Earlier work in

the Beaverhills watershed (e.g., Rooney and Bayley

2012; Wilson and Bayley 2012) determined that urban

wetlands are typically more disturbed than those in

agricultural or protected areas, so this gradient in

biotic integrity was not unexpected. Yet, when we re-

ran the GLM after factoring out the influence of

location, our conclusions were unchanged. Significant

models predicting IBI scores using land cover data

were generated for all seven spatial extents, and the

optimal spatial extent for predicting the plant-based

IBI remained smaller than that for predicting the bird-

based IBI (Supplementary Table S2).

Regressing land cover on IBI scores after factoring

out any influence of location is a conservative

approach to confirming our results, as it excludes

any correlation with biotic integrity shared by land

cover and location, regardless of the underlying

mechanism (Fig. 3). Our goal in this study was not

to tease apart mechanisms driving the relationship

between estimates of biotic integrity and land cover.

Rather, we sought to answer two questions funda-

mental to the development of GIS-based wetland

assessments: (1) whether a predictive relationship

between land cover and biotic integrity in wetlands of

the Beaverhills watershed exists; and (2) at what

spatial extent such relationships are best estimated.

The fact that our main conclusions were unchanged

regardless of the exclusion or inclusion of location’s

influence on IBI scores suggests strongly that remotely
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sensed land cover could serve as the basis for

reasonably accurate region-wide assessments of wet-

land condition.

‘‘Undisturbed’’ models yield poorer predictions

of biotic integrity

In rapidly developing regions or when year-to-year

variability in budgets and conservation opportunities

impede the immediate implementation of province-

wide reserve networks, simple models for identifying

conservation priorities out-perform more detailed

models (Meir et al. 2004). Thus, single variable

measures of wetland condition, like percent undis-

turbed land within 100 m, are of obvious appeal. This

is especially true where management units encompass

a patchwork of land cover maps, each created with

different data sources, at different resolutions, con-

structed using different land cover classification

approaches. In such cases, reducing all maps to a

common denominator (a binary system of disturbed

and undisturbed cover types) may overcome many of

the challenges presented by integrating such variable

components. Previous work has revealed evidence that

single-variable models can be predictive of habitat

quality. For example, looking at prairie pothole

wetlands in North Dakota, Mita et al. (2007) found

that the percent cover of grasslands explained 72 % of

the variance in a vegetation-based IBI score.

Unfortunately, our results suggest that the amount

of undisturbed land cover is a relatively poor surrogate

for more detailed models of biotic integrity in

depressional wetlands. At all spatial extents, the

‘‘undisturbed’’ model explained substantially less

variance in IBI score than the models based on more

detailed classifications of land cover data. Allowing

for optimization of landscape extent, the best we could

achieve using the ‘‘undisturbed’’ model was to explain

63 % of the variance in plant-based IBI scores and

57 % of the variance in bird-based IBI scores. In

contrast, our best models using detailed land cover

data explained 82 and 70 % of the variation in IBI

scores for plants and birds, respectively. If we

constrain the spatial extent to the 100 m buffer width

(as was recommended by policy makers within our

study region), there is an even greater loss of

predictive capacity: only 51 % of variance in plant-

based IBI scores and 38 % of variance in bird-based

IBI scores is explained by the simple models at the

100 m extent. This surprised us, especially for the

plant-based IBI, as the backwards stepwise modeling

with more detailed land cover data identified the

100 m buffer width as the optimal landscape extent.

Thus, it is important to consider the appropriate extent

of the landscape, regardless of whether land cover is

considered holistically or is reduced to a single

representative measure like the proportion of undis-

turbed habitat.

In terms of the balance between model accuracy

and complexity, the AICc values associated with the

‘‘undisturbed’’ models were much larger than those

associated with the models using detailed land cover

data, despite having one-fifth the number of predictor

variables (Tables 1, 2, 5). Thus, we observe that

although single predictor variable models can predict

biotic integrity (i.e., the simple models were statisti-

cally significant, with p \ 0.05), incorporating more

detailed land cover data substantially improves both

the strength and accuracy of IBI score predictions.

Furthermore, measures like the proportion of undis-

turbed land cover are typically derived from existing

GIS datasets that contain more detailed information

about land cover. In such instances, the accuracy of

wetland assessments could be substantially improved

by using the detailed land cover data to estimate IBI

scores rather than using it to calculate simple proxies

like the proportion of undisturbed land cover.

The ability to use remotely sensed data in place of

intensive assessments that require site visits should

inform land use planning and the identification of

areas of high conservation or restoration potential

(Sundell-Turner and Rodewald 2008). Without under-

standing the mechanisms by which land cover and

biotic integrity of wetlands are connected, GIS-based

assessments will not be diagnostic of the cause of

biological impairment (King et al. 2005). Rather, in

areas where GIS-based assessment suggests impair-

ment, more intensive field-level assessment will be

required to confirm and to identify the cause of

impairment (Brooks et al. 2004). Thus, we envision a

system where GIS-based and field-level assessments

are used in concert to facilitate a flexible, adaptive

approach to wetland management.

Despite extensive evidence that different taxa

interact with their surroundings at different spatial

extents, most studies relating the abundance or

diversity of biota to land cover explore only a single

spatial extent. Especially in the case of depressional
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wetlands, justification for using a given spatial extent

is usually poorly articulated. Due to the important

influence of spatial extent on model performance, we

recommend that the optimal landscape extent be

determined through a calibration process such as the

one we undertook, wherein biotic integrity is modeled

using land cover data extracted from a variety of

spatial extents within a test area before that model is

applied to a larger region. Such calibration efforts will

help ensure that wetland assessments made using

remotely sensed data provide reliable estimates of

actual wetland conditions.

Our models have been calibrated within the Bea-

verhills watershed, so we are able to successfully

predict biotic integrity using land cover data within

this region. The next logical question becomes how far

beyond the calibration region will our models hold

before we risk over-stepping their predictive capacity?

One important constraint in evaluating this question is

that IBIs are also regionally constrained in their

application (Karr 1993; Mack 2007). The IBI scores

we sought to predict are validated for the Aspen

Parkland Ecoregion (the transition zone between the

northern prairie and southern boreal habitats), so it

stands to reason that our landscape models should be

evaluated using the same biotic integrity indices

measured across the Aspen Parkland in order to

identify the limits to extrapolation.
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